Lista de exercícios sobre máximo divisor comum (MDC)

Preparamos uma lista de exercícios resolvidos sobre o máximo divisor comum. Vamos te mostrar como é simples fazer o cálculo do MDC e como resolver problemas com ele!

0

O máximo divisor comum (MDC) entre dois ou mais números corresponde ao valor do maior divisor que esses números têm em comum.

Uma forma usual de encontrar o MDC, é por meio da decomposição simultânea dos números em fatores primos.

É um procedimento semelhante ao cálculo do mínimo múltiplo comum (MMC), mas com algumas diferenças importantes.

Entenda mais sobre isso a partir de uma lista de exercícios sobre máximo divisor comum (MDC). Todos os exercícios estão resolvidos, passo a passo. Não deixe de conferir!

Lista de exercícios sobre máximo divisor comum (MDC)


Exercício 1. Encontre os divisores de 60 e 75 e responda:

a) quais são os divisores de 60 que também são divisores de 75?
b) qual é o maior divisor comum entre eles?


Exercício 2. Calcule o máximo divisor comum entre 500 e 280 pela decomposição em fatores primos.


Exercício 3. Calcule o máximo divisor comum entre 200, 124 e 380 pela decomposição em fatores primos.


Exercício 4. Sem fazer contas, determine o MDC entre 100, 300 e 600.


Exercício 5. Ângela confeccionou 56 camisetas e 70 bermudas. Ela deseja embalar cada tipo de peça em pacotes com a mesma quantidade e que, além disso, seja a maior quantidade possível.

Qual a quantidade de peças que ela deve colocar em cada pacote? Quantos pacotes de camisetas e quantos pacotes de bermudas ela terá?


Gabarito

Respostas do exercício 1

D(60) = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}

D(75) = {1, 3, 5, 15, 25, 75}

a) 1, 3, 5 e 15
b) 15

Respostas do exercício 2

No cálculo do MDC, fazemos a decomposição simultânea dos números em fatores primos. Depois, multiplicamos os fatores que dividimos os dois números em questão.

Decomposição de 500 e 280:

500, 280  | 2  → dividimos 500 e 280
250, 140  | 2 → dividimos 250 e 140
125, 70,    | 2
125, 35     | 5  → dividimos 125 e 35
25, 7           | 5
5, 7              | 5
1, 7              | 7
1, 1              ⇒ MDC(500, 280) = 2.2.5 = 20

Respostas do exercício 3

Decomposição de 200, 124 e 380:

200, 124, 380 | 2
100, 62, 190    | 2
50, 31, 95          | 2
25, 31, 95          | 5
5, 31, 19             | 5
1, 31, 19             | 19
1, 31, 1                | 31
1, 1, 1                   ⇒ MDC(200, 124, 380)= 2.2 = 4

Respostas do exercício 4

Em um conjunto de números, se o menor número for um divisor de todos os outros, então, ele é o máximo divisor comum entre eles.

No caso dos números 100, 300 e 600, o menor número é 100. Como 100 é divisor de 300 e de 600, então, ele é o MDC entre eles.

MDC(100, 300, 600) = 100

Respostas do exercício 5

Para resolver esse problema, vamos calcular o MDC entre 56 e 70.

56, 70 | 2
28, 35 | 2
14, 35 | 2
7, 35    | 5
7, 7       | 7
1,1        ⇒ MDC (56, 70) = 2. 7 = 14

Assim, as 56 camisetas e 70 bermudas podem ser empacotadas de 14 em 14 peças, ou seja, cada pacote terá 14 peças.

Agora, vamos calcular o número de pacotes de camisetas e o número de pacotes de bermudas:

56 : 14 =  4  ⇒ 4 pacotes de camisetas

70 : 14 = 5  ⇒ 5 pacotes de bermudas

Para baixar essa lista em PDF, clique aqui!

Você também pode se interessar:

você pode gostar também